

serdelicacy

[image: image-version]
 [https://python.org/pypi/serdelicacy][image: image-license]
 [https://python.org/pypi/serdelicacy][image: image]
 [https://python.org/pypi/serdelicacy][image: image-ci]
 [https://github.com/pappasam/serdelicacy/actions?query=workflow%3A%22serdelicacy+ci%22][image: readthedocs-status]
 [https://serdelicacy.readthedocs.io/en/latest/?badge=latest]Serialize (serdelicacy.dump) and deserialize (serdelicacy.load) from/to strongly-typed, native Python data structures.

Read the latest documentation here [https://serdelicacy.readthedocs.io/en/latest/?badge=latest]

Features

	Effortless deserialization of unstructured Python types into structured, type-hinted Python types (dataclasses.dataclass, typing.NamedTuple)

	Effortless serialization of structured, type-hinted Python objects into unstructured Python types (eg, the reverse)

	Clear error messages when serde fails at runtime

	No inherited, non-standard types. dataclasses, NamedTuples, and other standard Python types are bread and butter

	Editor support: I like my autocompletion, so I jump through lots of hoops to make this library compatible with Jedi

	Handle optional properties [https://www.typescriptlang.org/docs/handbook/interfaces.html#optional-properties] with a domain-specific serdelicacy.OptionalProperty

	Enable customization through sophisticated validation, deserialization overrides, and serialization overrides for dataclasses.

	Require no 3rd party dependencies; Python 3.8+

Installation

With pip
pip install serdelicacy

With poetry
poetry add serdelicacy

Usage

See examples folder [https://github.com/pappasam/serdelicacy/tree/master/example].

Validation / transformation for dataclasses

Customization override options are available for validations and transformations on both deserialization and serialization. Custom overrides are available for dataclasses through the metadata argument to the dataclasses.field function:

from dataclasses import dataclass, field

import serdelicacy
from serdelicacy import Override

def _is_long_enough(value) -> None:
 if len(value) < 4:
 raise ValueError(f"'{value}' is not enough characters")

VALUE = {"firstname": "richard", "lastname": "spencerson"}

@dataclass
class Person:
 firstname: str = field(
 metadata={
 "serdelicacy": Override(
 validate=_is_long_enough,
 transform_load=str.title,
)
 }
)
 lastname: str = field(
 metadata={
 "serdelicacy": Override(
 validate=_is_long_enough,
 transform_load=str.title,
 transform_dump=str.upper,
)
 }
)

print(serdelicacy.load(VALUE, Person))

As suggested by the Python dataclasses.field documentation [https://docs.python.org/3/library/dataclasses.html#dataclasses.field], all serdelicacy-related field metadata is namespaced to 1 dictionary key: serdelicacy. Its value should be of type serdelicacy.Override, a dataclass itself whose fields are the following:

	validate: Callable[[Any], NoReturn], Callable[[Any], bool]: a function that either a) returns a boolean where False indicates failed validation or b) nothing, but raises Python exceptions on validation failure. Is executed as the final step of a value’s load, after all transformations have been completed. By default, this is a function that does nothing.

	transform_load: Callable[[Any], Any]. This transformation is executed before any other loading takes place. By default, this is an [identity function](https://en.wikipedia.org/wiki/Identity_function)

	transform_postload: this should be Callable[[T], T]], where T is the type of the field. This transformation is executed after all recursive loading takes place as the final step before the value is returned for upstream processing. By default, this is an [identity function](https://en.wikipedia.org/wiki/Identity_function)

	transform_dump: this should be Callable[[T], Any]], where T is the type of the field. This function is executed before a value is recursively serialized. By default, this is an [identity function](https://en.wikipedia.org/wiki/Identity_function)

Finally, you may not need to use these tools initially, but if you have strict validation or transformation requirements on your project, you’ll be extremely happy they’re here

FAQ

My JSON keys contain whitespace, etc

Simple solution: use typeing.TypeDict‘s backwards-compatibility syntax [https://www.python.org/dev/peps/pep-0589/#alternative-syntax].

from pprint import pprint
from typing import List, TypedDict

import serdelicacy
from serdelicacy import OptionalProperty

DATA = [
 {
 "weird, key": 1,
 "normal": 2,
 },
 {
 "normal": 3,
 },
]

DataItem = TypedDict(
 "DataItem",
 {
 "weird, key": OptionalProperty[int],
 "normal": int,
 },
)

LOADED = serdelicacy.load(DATA, List[DataItem])

print("Loaded data:")
pprint(LOADED)

print("Re-serialized data:")
pprint(serdelicacy.dump(LOADED))

This prints the following to the console.

Loaded data:
[{'normal': 2, 'weird, key': 1},
 {'normal': 3, 'weird, key': <Missing property>}]
Re-serialized data:
[{'normal': 2, 'weird, key': 1}, {'normal': 3}]

Try changing values in your JSON data; you’ll get runtime errors if your data does not conform to the above schema. Additionally, mypy should call out any misused variable keys / types. In short, this has enabled a type-safe load and a perfectly sane dump.

Local Development

Local development for this project is simple.

Dependencies

Install the following tools manually.

	Poetry [https://github.com/sdispater/poetry#installation]

	GNU Make [https://www.gnu.org/software/make/]

Recommended

	asdf [https://github.com/asdf-vm/asdf]

Set up development environment

make setup

Run Tests

make test

Notes

	Initially inspired by undictify [https://github.com/Dobiasd/undictify] and a PR I helped with. serdelicacy’s goals are different; it’s focused on serde instead of general function signature overrides.

	I also notice some striking similarities with a library called typedload [https://github.com/ltworf/typedload] (great minds think alike, I guess :p). I renamed my top-level functions to “load” and “dump” in typedload’s homage. Unfortunately, as of version 1.20, typedload does not handle all types of dataclasses elegantly (mainly, InitVar). Since typedload supports Python 3.5+, it never will elegantly handle all dataclasses without lots of unfortunate conditionals in the codebase. If you must use Python 3.7-, I suggest looking into typedload.

Written by

Samuel Roeca samuel.roeca@gmail.com

Public API

Goal: load and dump data into strongly-typed data structures.

	“Deserialize” unstructured Python types into structured, type-hinted Python
types (dataclasses.dataclass, typing.NamedTuples).

	“Serialize” structured, type-hinted Python objects into unstructured Python
types (eg, the reverse).

The top-level module contains serdelicacy’s public API and is directly
importable from serdelicacy. If you choose to import names from anything
outside of this module, do so at your own risk. Code organization in the
package submodules is subject to change at any time is not reflected in this
library’s semantic versioning strategy.

Deserialization

This function is the entrypoint to serdelicacy’s deserialization process:

	
serdelicacy.load(obj, constructor, typesafe_constructor=True)

	Deserialize an object into its constructor.

	Parameters

	
	obj (Any) – the serialized object that we want to deserialize

	constructor (Type[T]) – the type into which we want serialize obj

	typesafe_constructor (bool) – special-case flag to ensure the provided
top-level constructor is not one of several “unsafe” types. If this
is False, no validation will be performed. Keep this True
unless you have an excellent reason to override it.

	Returns

	A recursively-filled, typesafe instance of constructor

	Raises

	
	TypeError – if typesafe is True and a non-typesafe constructor is
 provided

	serdelicacy.DeserializeError – triggered by any deserialization error

	Return type

	T

Example

This simple library example shows serdelicacy.load’s recursive
capabilites, exposed through an extremely simple pure-Python interface.

from typing import List
from dataclasses import dataclass
import serdelicacy

DATA = {
 "name": "Great library",
 "year_founded": 2018,
 "books": [
 {
 "title": "Great Book",
 "author": "Smitty",
 },
 {
 "title": "Bad Book",
 "author": "Smotty",
 },
],
}

@dataclass
class Book:
 title: str
 author: str

@dataclass:
class Library:
 name: str
 year_founded: int
 books: List[Book]

LIBRARY = serdelicacy.load(DATA, Book)

assert isinstance(LIBRARY, Library)
assert isinstance(LIBRARY.books[0], Book)

Serialization

This function is the entrypoint to serdelicacy’s serialization process:

	
serdelicacy.dump(obj, convert_missing_to_none=False)

	Serialize an object into a lesser-typed form.

	Parameters

	
	obj (Any) – the object that you would like to serialize.

	convert_missing_to_none (bool) – flag indicating whether or not we should
retain a missing property’s key and convert its value to None.
This will keep all keys when serializing. Useful if you want to
keep all column names and assign value of None to missing
columns.

	Returns

	A serialized form of obj.

	Raises

	sedelicacy.SerializeError – raised for any unhandled error

	Return type

	Any

Notes

If serializing a dataclass and transform_dump metadata exists in a
dataclass’s ‘dataclasses.field, its value is assumed to be function
whose result is serialized before being passed recursively down the
chain.

	Serialize from an instance of a -> an instance of b:
	
dataclass -> Dict

NamedTuple -> Dict

Enum -> enum value

str -> str

Sequence -> List

Mapping -> Dict

MISSING -> None (if convert_missing_to_none is True)

MISSING filtered out (if convert_missing_to_none is False)

Anything else -> itself

Utilities

You may use the following tools to:

	Operate on serdelicacy-affecred Python values in a typesafe way

	Augment dataclasses.dataclass to give serdelicacy more information about how to process data.

	
serdelicacy.get(value, default)

	Return value unless it’s MISSING, in which case return default.

Similar to dict.get, but operates on OptionalProperty, provides no
default for default, and is typesafe.

	Parameters

	
	value (Union[serdelicacy.typedefs.Missing, T]) – an OptionalProperty

	default (T) – a value of the same type as value’s inner non-MISSING type

	Returns

	default if value is MISSING, otherwise value

	Return type

	T

	
serdelicacy.is_missing(value)

	Check whether value is MISSING

Prevents users from needing to import MISSING constant.

	Parameters

	value (Any) – any Python object

	Returns

	True if a value is MISSING, False otherwise

	Return type

	bool

	
class serdelicacy.Override(validate=<function _noreturn>, transform_load=<function _id>, transform_postload=<function _id>, transform_dump=<function _id>)

	User-defined overrides for serde with datacalsses.dataclass

Should be passed into the metadata argument to dataclasses.field via
the “serdelicacy” key.

	Parameters

	
	validate – a function that either returns True on positive validation
/ False on non-validation, or returns nothing at all and instead
relies on the raising of exceptions to indicate whether validation
passed for failed.

	transform_load – a function that, when deserializing, is evaluated on an
object before the object is recursively examined.

	transform_postload – a function that, when deserializing, is evaluated
on an object after the object has been recursively examined. When
possible, the transform_load should be preferred over
transform_postload, but there are situations where
transform_postload is useful.

	transform_dump – a function that, when serializing a dataclass, is
called on its value before it is recursively serialized.

Example

The following example shows how a function, returning True/False,
is passed to serdelicacy.load through the metadata parameter to
dataclasses.field.

from dataclasses import dataclass, field
import serdelicacy
from serdelicacy import Override

BOOK_RAW = {"author": "sam"}

@dataclass
class Book:
 author: str = field(
 metadata={"serdelicacy": Override(validate=str.istitle)}
)

BOOK = serdelicacy.load(BOOK_RAW, Book)

This example should raise a serdelicacy.DeserializeError

Types

The following types are custom to serdelicacy:

	
serdelicacy.OptionalProperty = typing.Union[serdelicacy.typedefs.Missing, ~T]

	Type alias for a value that can be MISSING

OptionalProperty is extremely useful when differentiating between values that
can be missing and those that are None.

Example

from typing import List, Optional
from dataclasses import dataclass
import serdelicacy
from serdelicacy import OptionalProperty

DATA = [
 {
 "hello": "friend",
 "world": "foe",
 },
 {
 "hello": "Rawr",
 },
 {
 "hello": None,
 "world": "hehe",
 },
]

@dataclass
class HelloWorld:
 hello: Optional[str]
 world: OptionalProperty[str]

PARSED = serdelicacy.load(DATA, List[HelloWorld])

assert serdelicacy.is_missing(PARSED[1].world)
assert not PARSED[1].world # note: it's Falsey!
assert PARSED[2].hello is None

Exceptions

serdelicacy may raise the following Python exceptions during the serialization and/or the deserialization process.

	
exception serdelicacy.SerdeError

	Bases: Exception

Base error for serdelicacy.

Associated with both serdelicacy.dump and serdelicacy.load
through serdelicacy.DeserializeError and
serdelicacy.SerializeError.

	
exception serdelicacy.DeserializeError(type_expected, value_received, depth, key, message_prefix='', message_postfix='', message_override='')

	Bases: serdelicacy.errors.SerdeError

Deserialization error associated with serdelicacy.load.

Deserializing arbitrarily-nested JSON often results in opaque
deserialization errors. This Exception class provides a clear, consistent
debugging message.

	Parameters

	
	type_expected (Type) – the type serdelicacy expected a value to be.

	value_received (Any) – the actual object received.

	depth (List[serdelicacy.errors.DepthContainer]) – objects containing information about the current level of
recursion.

	key (Any) – if the current value is associated with a key, provide the key’s
value. This can technically have any value.

	message_prefix (str) – message to prepend to the generated error message.

	message_postfix (str) – message to postpend to the generated error message.

	message_override (str) – if provided, replaces generated error message.

Note

This is part of the public interface insofar as you may need it to
catch errors. You won’t need it to instantiate or raise this exception
it yourself.

	
exception serdelicacy.SerializeError

	Bases: serdelicacy.errors.SerdeError

Serialization error associated with serdelicacy.dump.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 serdelicacy	

Index

 D
 | G
 | I
 | L
 | M
 | O
 | S

D

 	
 	DeserializeError

 	
 	dump() (in module serdelicacy)

G

 	
 	get() (in module serdelicacy)

I

 	
 	is_missing() (in module serdelicacy)

L

 	
 	load() (in module serdelicacy)

M

 	
 	
 module

 	serdelicacy

O

 	
 	OptionalProperty (in module serdelicacy)

 	
 	Override (class in serdelicacy)

S

 	
 	SerdeError

 	
 serdelicacy

 	module

 	
 	SerializeError

 nav.xhtml

 Table of Contents

 		
 serdelicacy

_static/minus.png

_static/plus.png

_static/file.png

